3.1.95 \(\int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [95]

3.1.95.1 Optimal result
3.1.95.2 Mathematica [B] (verified)
3.1.95.3 Rubi [A] (verified)
3.1.95.4 Maple [B] (warning: unable to verify)
3.1.95.5 Fricas [A] (verification not implemented)
3.1.95.6 Sympy [F]
3.1.95.7 Maxima [F]
3.1.95.8 Giac [F(-2)]
3.1.95.9 Mupad [F(-1)]

3.1.95.1 Optimal result

Integrand size = 23, antiderivative size = 84 \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f} \]

output
-arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))*a^(1/2)/f+arctanh( 
sec(f*x+e)*b^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))*b^(1/2)/f
 
3.1.95.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(170\) vs. \(2(84)=168\).

Time = 2.68 (sec) , antiderivative size = 170, normalized size of antiderivative = 2.02 \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\sec (e+f x) \left (-\sqrt {a} \arctan \left (\frac {\sqrt {a} \sqrt {\sec ^2(e+f x)}}{\sqrt {-a-b \tan ^2(e+f x)}}\right ) \sqrt {-a-b \tan ^2(e+f x)}+\sqrt {a-b} \sqrt {b} \text {arcsinh}\left (\frac {\sqrt {b} \sqrt {\sec ^2(e+f x)}}{\sqrt {a-b}}\right ) \sqrt {\frac {a+b \tan ^2(e+f x)}{a-b}}\right )}{f \sqrt {\sec ^2(e+f x)} \sqrt {a+b \tan ^2(e+f x)}} \]

input
Integrate[Csc[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(Sec[e + f*x]*(-(Sqrt[a]*ArcTan[(Sqrt[a]*Sqrt[Sec[e + f*x]^2])/Sqrt[-a - b 
*Tan[e + f*x]^2]]*Sqrt[-a - b*Tan[e + f*x]^2]) + Sqrt[a - b]*Sqrt[b]*ArcSi 
nh[(Sqrt[b]*Sqrt[Sec[e + f*x]^2])/Sqrt[a - b]]*Sqrt[(a + b*Tan[e + f*x]^2) 
/(a - b)]))/(f*Sqrt[Sec[e + f*x]^2]*Sqrt[a + b*Tan[e + f*x]^2])
 
3.1.95.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 4147, 25, 301, 224, 219, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \tan (e+f x)^2}}{\sin (e+f x)}dx\)

\(\Big \downarrow \) 4147

\(\displaystyle \frac {\int -\frac {\sqrt {b \sec ^2(e+f x)+a-b}}{1-\sec ^2(e+f x)}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\sqrt {b \sec ^2(e+f x)+a-b}}{1-\sec ^2(e+f x)}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 301

\(\displaystyle \frac {b \int \frac {1}{\sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)-a \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {b \int \frac {1}{1-\frac {b \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}-a \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )-a \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )-a \int \frac {1}{1-\frac {a \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )-\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{f}\)

input
Int[Csc[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(-(Sqrt[a]*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]]) 
 + Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]]) 
/f
 

3.1.95.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 301
Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/ 
d   Int[(a + b*x^2)^(p - 1), x], x] - Simp[(b*c - a*d)/d   Int[(a + b*x^2)^ 
(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] 
&& GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4] || (EqQ[p, 2/3] && E 
qQ[b*c + 3*a*d, 0]))
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4147
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^ 
m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m + 1 
)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[( 
m - 1)/2]
 
3.1.95.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(427\) vs. \(2(72)=144\).

Time = 0.52 (sec) , antiderivative size = 428, normalized size of antiderivative = 5.10

method result size
default \(\frac {\sqrt {a +b \tan \left (f x +e \right )^{2}}\, \left (2 \sqrt {b}\, \ln \left (-4 \sqrt {b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}-4 \sqrt {b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sec \left (f x +e \right )-4 b \sec \left (f x +e \right )\right ) \sqrt {a}-a \ln \left (-\frac {4 \left (\cos \left (f x +e \right ) \sqrt {a}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}+\cos \left (f x +e \right ) a -b \cos \left (f x +e \right )+\sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sqrt {a}+b \right )}{\cos \left (f x +e \right )-1}\right )-\ln \left (\frac {2 \cos \left (f x +e \right ) \sqrt {a}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}+2 \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sqrt {a}-2 \cos \left (f x +e \right ) a +2 b \cos \left (f x +e \right )+2 b}{\sqrt {a}\, \left (\cos \left (f x +e \right )+1\right )}\right ) a \right ) \cos \left (f x +e \right )}{2 f \sqrt {a}\, \left (\cos \left (f x +e \right )+1\right ) \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}}\) \(428\)

input
int(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/f/a^(1/2)*(a+b*tan(f*x+e)^2)^(1/2)*(2*b^(1/2)*ln(-4*b^(1/2)*((a*cos(f* 
x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)-4*b^(1/2)*((a*cos(f*x+e)^ 
2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*sec(f*x+e)-4*b*sec(f*x+e))*a^( 
1/2)-a*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f 
*x+e)+1)^2)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+((a*cos(f*x+e)^2-b*cos(f*x+e)^ 
2+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/(cos(f*x+e)-1))-ln(2/a^(1/2)*(cos( 
f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)+ 
((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x 
+e)*a+b*cos(f*x+e)+b)/(cos(f*x+e)+1))*a)*cos(f*x+e)/(cos(f*x+e)+1)/((a*cos 
(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)
 
3.1.95.5 Fricas [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 514, normalized size of antiderivative = 6.12 \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\left [\frac {\sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) + \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, -\frac {2 \, \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) - \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, f}, \frac {2 \, \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) + \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) - \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right )}{f}\right ] \]

input
integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[1/2*(sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos 
(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1 
)) + sqrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f* 
x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/f, -1/2 
*(2*sqrt(-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e 
)^2)*cos(f*x + e)/b) - sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)* 
sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(c 
os(f*x + e)^2 - 1)))/f, 1/2*(2*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos( 
f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) + sqrt(b)*log(-((a - b)*co 
s(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2) 
*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/f, (sqrt(-a)*arctan(sqrt(-a)*sqrt((( 
a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) - sqrt(-b)*arct 
an(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) 
/b))/f]
 
3.1.95.6 Sympy [F]

\[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \csc {\left (e + f x \right )}\, dx \]

input
integrate(csc(f*x+e)*(a+b*tan(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(e + f*x)**2)*csc(e + f*x), x)
 
3.1.95.7 Maxima [F]

\[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \csc \left (f x + e\right ) \,d x } \]

input
integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e), x)
 
3.1.95.8 Giac [F(-2)]

Exception generated. \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.1.95.9 Mupad [F(-1)]

Timed out. \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{\sin \left (e+f\,x\right )} \,d x \]

input
int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x),x)
 
output
int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x), x)